Tunable and low-loss correlated plasmons in Mott-like insulating oxides
نویسندگان
چکیده
Plasmonics has attracted tremendous interests for its ability to confine light into subwavelength dimensions, creating novel devices with unprecedented functionalities. New plasmonic materials are actively being searched, especially those with tunable plasmons and low loss in the visible-ultraviolet range. Such plasmons commonly occur in metals, but many metals have high plasmonic loss in the optical range, a main issue in current plasmonic research. Here, we discover an anomalous form of tunable correlated plasmons in a Mott-like insulating oxide from the Sr1-xNb1-yO3+δ family. These correlated plasmons have multiple plasmon frequencies and low loss in the visible-ultraviolet range. Supported by theoretical calculations, these plasmons arise from the nanometre-spaced confinement of extra oxygen planes that enhances the unscreened Coulomb interactions among charges. The correlated plasmons are tunable: they diminish as extra oxygen plane density or film thickness decreases. Our results open a path for plasmonics research in previously untapped insulating and strongly-correlated materials.
منابع مشابه
Mott-Anderson Transition in Molecular Conductors: Influence of Randomness on Strongly Correlated Electrons in the κ-(BEDT-TTF)2X System
The Mott-Anderson transition has been known as a metal-insulator (MI) transition due to both strong electron-electron interaction and randomness of the electrons. For example, the MI transition in doped semiconductors and transition metal oxides has been investigated up to now as a typical example of the Mott-Anderson transition for changing electron correlations by carrier number control in co...
متن کاملUnconventional Magnetism and Band Gap Formation in LiFePO4: Consequence of Polyanion Induced Non-planarity
Oxygen plays a critical role in strongly correlated transition metal oxides as crystal field effect is one of the key factors that determine the degree of localization of the valence d/f states. Based on the localization, a set of conventional mechanisms such as Mott-Hubbard, Charge-transfer and Slater were formulated to explain the antiferromagnetic and insulating (AFI) phenomena in many of th...
متن کاملImaging phase separation near the Mott boundary of the correlated organic superconductors kappa-(BEDT-TTF)2X.
Electronic phase separation consisting of the metallic and insulating domains with 50-100 microm in diameter is found in the organic Mott system kappa-[(h8-BEDT-TTF)(1-x)(d8-BEDT-TTF)x]2Cu[N(CN)2]Br by means of scanning microregion infrared spectroscopy using the synchrotron radiation. The phase separation appears below the critical end temperature 35-40 K of the first-order Mott transition. Th...
متن کاملElectronics with Correlated Oxides: SrVO(3)/SrTiO(3) as a Mott Transistor.
We employ density functional theory plus dynamical mean field theory and identify the physical origin of why two layers of SrVO(3) on a SrTiO(3) substrate are insulating: the thin film geometry lifts the orbital degeneracy, which in turn triggers a first-order Mott-Hubbard transition. Two layers of SrVO(3) are just at the verge of a Mott-Hubbard transition and hence ideally suited for technolog...
متن کاملMott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites.
Using t(2g) Wannier functions, a low-energy Hamiltonian is derived for orthorhombic 3d(1) transition-metal oxides. Electronic correlations are treated with a new implementation of dynamical mean-field theory for noncubic systems. Good agreement with photoemission data is obtained. The interplay of correlation effects and cation covalency (GdFeO3-type distortions) is found to suppress orbital fl...
متن کامل